If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=2025
We move all terms to the left:
5x^2-(2025)=0
a = 5; b = 0; c = -2025;
Δ = b2-4ac
Δ = 02-4·5·(-2025)
Δ = 40500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40500}=\sqrt{8100*5}=\sqrt{8100}*\sqrt{5}=90\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{5}}{2*5}=\frac{0-90\sqrt{5}}{10} =-\frac{90\sqrt{5}}{10} =-9\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{5}}{2*5}=\frac{0+90\sqrt{5}}{10} =\frac{90\sqrt{5}}{10} =9\sqrt{5} $
| 2(g-3)=14 | | k-659÷28=8 | | 2(2x+20)=2(2x+20) | | 78=7x+x(x+12) | | -4x+10=2(-2x-7) | | 8x–27=12x+5 | | 2=-(x-11)-11 | | k-659÷28=7 | | 13-4t=-71 | | 12=3x+3x | | 0.7n=-3.5n | | 3/5x-2=1.01/3 | | 132=-1+7x | | 15x-31=9x-11 | | 4x+2x−12=6(x−2) | | 8b+2b=300 | | 12/3m+2=11/6 | | 208-n=139 | | x2-x=4 | | 0.06(y-1)+0.02y=0.16-06 | | 5/6r=435 | | -2=-27g | | -10+5x=-5(-x+2) | | 3m+2=16(m-16) | | -y/3-2=-18 | | 4(w+1)–5=15 | | -6=-27g | | -4=x/16-3 | | 8=2d-4d | | v/27+925=952 | | −30=−m+6 | | 1.47x6=8.82 |